

N₅

ng

If we increase
$$\Theta$$
 up to an angle
 Θ^* with mg sin $\Theta^* = m_s N = m_s mg \cos \Theta^*$
then we can measure m_s :
 $m_s = \tan \Theta^*$
Note: the mass has cancelled. So
it doesn't matter on which
planet we perform this experiment,
the result will always be the same.
For tan $\Theta > m_s$ the block will begin
to slide down \implies frictional force becomes
 $f_K = m_K N (m_K < m_s)$
Relevant equations are:
 $N - mg \cos \Theta = may (1) \implies N > mg \cos \Theta$
 $mg \sin \Theta - m_K N = ma_X (2)$
 $\implies q(\sin \Theta - m_K \cos \Theta) = a_X$

Example 7 (coupled masses):
Consider the following situation
rope N
assume
$$M > m$$

assume $M > m$
assume $M > m$
assume $M > m$
 M_{g}
. the bigger mass M will go down the slope
as $M \rightarrow \infty$
. the smaller mass m will go straight
down as $\theta \rightarrow \infty$
. the smaller mass m will go straight
down as $\theta \rightarrow \infty$
. the straight
 M_{g}
. the smaller mass m will go straight
 $M \rightarrow \infty$
. the smaller mass m will go straight
 $M \rightarrow \infty$
. the smaller mass m will go straight
 $M \rightarrow \infty$
. the smaller mass m will go straight
 $M \rightarrow \infty$
. $M \rightarrow$

$$\Rightarrow equation for M along x - axis:
Mgsin $\theta - T = Ma$ (1)
equation for m is:
 $T - mg = ma$ (2)
adding (1) and (2) gives:
Mg sin $\theta - mg = Ma + ma$
 $\Rightarrow a = g \left[\frac{Msin \theta - m}{m + M} \right]$$$

For negative
$$a < o_1$$
 the same formula
can be equivalently applied
Adding friction, we get
Mg sin $\Theta - T - f = Ma$
 $T - mg = ma$
 $= ma$ Mass Θ
 $\Rightarrow a = g \left[\frac{M sin \Theta - \frac{2}{9} - m}{m + 1} \right]$

§3.4 Circular motion
Consider the following situation:

$$x \leftarrow P$$

 $x \leftarrow P$
 $x \leftarrow P$

Example 8:
Imagine you are driving on a circular
race track of radius R at speed v

$$\rightarrow$$
 need a force $m \frac{v^2}{R}$ on the
car to bend it into a circle !
two solutions:
a) use friction $f \leq m_{S}m_{g}$
b) tilt the road by an angle Θ
(neglect friction) as follows:
road
 N_{NNEOSO}
R
Noso $\theta = m_{g}$
N sin $\theta = m \frac{v^2}{R}$ \Rightarrow tan $\theta = \frac{v^2}{Rg}$

\$4. Law of Conservation of Energy \$4.1 Introduction to energy Consider a force that produces an acceleration $\alpha = \frac{F}{m}$ in §I we saw that for constant acceleration: Q2= U2+ 2a(x-xo) $\longrightarrow U_2^2 = U_1^2 + 2 \frac{F}{12} d$ where $d = x - x_0 =: x_2 - x_1$ $\iff \frac{1}{2}mU_2^2 - \frac{1}{2}mU_1^2 = Fd$ (\star) Definition 1: i) The combination I moz is called "Kinetic energy", denoted by Er ii) The product Fd is called "work done by the force" and is denoted by W. units: Nm =: J (Joule)

Equation (*) gives the
Theorem 1 (work-energy theorem):

$$K_2 - K_1 = Fd = W$$

"The change in kinetic energy is
equal to the work done by
all the forces."
Next, imagine the work is done in
a time interval Δt , distance $d = \Delta x$
 $\Rightarrow \lim_{\Delta t \to 0} \frac{\Delta k}{\Delta t} = \frac{dk}{dt} = F \frac{dx}{dt} = Fv = P$
Definition 2:
The quantity $P = Fv = \frac{dk}{dt}$ is
defined as "power"
rate at which work is done
Units: $\frac{T}{5}$ (joules per second)
or W (watts)

-> a 60 W light bulb consumes energy
at the rate 60 joula per second
Zet us now look at forces that
vary in time:
• force of a spring
$$F(x) = -kx$$

• force of gravity (it is only
locally approximately constant = may)
En general:
 $F(x)$
 $f(x$

-> have to sum up al small rectangles
below graph
-> going from x, to x, means
computing area under graph
"Riemann integral"
-> work-energy theorem in general form:
x₁
K₂ - K₁ =
$$\int_{x_1}^{x_2} F(x) dx =: W$$

Use "Fundamental Theorem" of calculus
to compute it:
• find function
$$G(x)$$
 with
 $F(x) = \frac{dG(x)}{dx}$
• then $\int_{x_1}^{x_2} F(x)dx = G(x_2) - G(x_1)$
 $\int_{x_1}^{x_2} F(x)dx = \lim_{n \to \infty} \sum_{l=1}^{n} \frac{G(x_1 + l \frac{x_2 - x_1}{n}) - G(x_1 + (l - 1)\frac{x_2 - x_1}{n})}{\frac{1}{n}} - \frac{1}{n}$
 $= G(x_2) - G(x_1)$