Example 5 (normal force and friction):
i) Consider a mass $m$ sitting on a table as shown below:

The force is a vector

ii) with "friction":


$$
\begin{aligned}
\rightarrow \quad F_{x} & =m a_{x} \\
F_{y} & =m a_{y}
\end{aligned}
$$

- $x$-direction:

$$
F_{x}=0, \quad a_{x}=0 \Rightarrow 0=0
$$

- $y$-direction:

$$
N-m g=m a_{y}
$$

know $a_{y}=0$ $\Rightarrow \quad N=m g$

- For $F_{m e}<\mu_{s} N$, coefficient of static friction block doesn't move
- For $F_{m e}>\mu_{s} N$, block starts moving: $F_{m e}-\mu_{k} N=m a_{x}$ coefficient of kinetic friction

Example 6 (Inclined plane):
i) without friction:

Consider a mass $m$ sitting an an inclined plane.


Then we obtain the following equations:

$$
\begin{align*}
m g \sin \theta & =m a_{x}  \tag{1}\\
N-m g \cos \theta & =m a_{y} \tag{2}
\end{align*}
$$

We know $a_{y}=0 \Rightarrow N=m g \cos \theta$
(1) $\Rightarrow a_{x}=g \sin \theta$

Thus, by making $\theta$ small, we can reduce the acceleration by factor $\sin \theta$
ii) with friction:


Relevant equations:

$$
\begin{align*}
N-m g \cos \theta & =m a_{y}  \tag{1}\\
m g \sin \theta-f & =m a_{x} \tag{2}
\end{align*}
$$

(1) $+a_{y}=0 \Rightarrow N=m g \cos \theta$

Note: the static frictional force is not always $\mu_{3} N$; it is whatever it takes to keep the block still, up to a maximum of $\mu_{0} N$.
$\Rightarrow$ for $m g \sin \theta<\mu_{s} N$ we have
$(2) \Rightarrow f=m g \sin \theta \quad\left(a_{x}=0\right)$

If we increase $\theta$ up to an angle $\theta^{*}$ with $m g \sin \theta^{*}=\mu_{s} N=\mu_{s} m g \cos \theta^{*}$ then we can measure $\mu_{s}$ :

$$
\mu_{s}=\tan \theta^{*}
$$

Note: the mass has cancelled. So it doesn't matter on which planet we perform this experiment, the result will always be the same.
For $\tan \theta>\mu_{s}$ the block will begin to slide down $\rightarrow$ frictional force becomes

$$
f_{k}=\mu_{k} N \quad\left(\mu_{k}<\mu_{s}\right)
$$

Relevant equations are:

$$
\begin{align*}
N-m g \cos \theta & =m a_{y} \text { (1) } \quad \Rightarrow N=m g \cos \theta \\
m g \sin \theta-\mu_{k} N & =m a_{x} \tag{2}
\end{align*}
$$

$\Rightarrow$ eq. (2) becomes:

$$
\begin{aligned}
& m g \sin \theta-\mu_{k} m g \cos \theta=m a_{x} \\
& \Leftrightarrow g\left(\sin \theta-\mu_{k} \cos \theta\right)=a_{x}
\end{aligned}
$$

Example 7 (coupled masses):
Consider the following situation

assume $M>m$

- the bigger mass $M$ will go down the slope as $M \rightarrow \infty$
- the smaller mass $m$ will go straight down as $\theta \longrightarrow 0$
Let us draw the free-body diagram:

tension $T$ is everywhere the same along the rope
$\rightarrow$ equation for $M$ along $x$-axis:

$$
\begin{equation*}
M g \sin \theta-T=M_{a} \tag{1}
\end{equation*}
$$

equation for $m$ is:

$$
\begin{equation*}
T-m g=m a \tag{2}
\end{equation*}
$$

adding (1) and (2) gives:

$$
\begin{aligned}
M g \sin \theta-m g & =M a+m a \\
\Leftrightarrow \quad a & =g\left[\frac{M \sin \theta-m}{m+M}\right]
\end{aligned}
$$

$\rightarrow$ for a to be positive, we need

$$
M \sin \theta>m
$$

For negative $a<0$, the same formula can be equivalently applied
Adding friction, we get

$$
\begin{aligned}
& M g \sin \theta-T-f=M a \\
T-m g & =m a \\
\Rightarrow & a=g\left[\frac{M \sin \theta-\frac{f^{\prime \prime}}{g}-m}{m+1}\right]
\end{aligned}
$$

§3.4 Circular motion
Consider the following situation:


Recall "centripetal" acceleration for circular motion:

$$
a=|\vec{a}|=\omega^{2} R
$$

where $\omega$ is "angular velocity" given by $\omega=\frac{v}{R}$
$\Rightarrow a=\frac{v^{2}}{R}$ velocity"
$\rightarrow$ relevant equations:

$$
\begin{aligned}
& T \cos \theta-m g=0 \quad \text { vertical } \\
& T \sin \theta=m a=m \frac{\theta^{2}}{R} \quad \text { horizontal (radial) } \\
\Rightarrow & \tan \theta=\frac{v^{2}}{R g}
\end{aligned}
$$

then $1+\tan ^{2} \theta=\frac{1}{\cos ^{2} \theta}$

$$
\rightarrow T=m g \sqrt{1+\left(\frac{v^{2}}{R g}\right)^{2}}
$$

Example 8:
Imagine you are driving on a circular racetrack of radius $R$ at speed $v$
$\rightarrow$ need a force $m \frac{v^{2}}{R}$ on the car to bend it into a circle? two solutions:
a) use friction $f \leqslant \mu_{s} m g$
b) tilt the road by an angle $\theta$ (neglect friction) as follows:

$\rightarrow$ relevant equations:

$$
\left.\begin{array}{l}
N \cos \theta=m g \\
N \sin \theta=m \frac{v^{2}}{R}
\end{array}\right\} \Rightarrow \tan \theta=\frac{v^{2}}{R g}
$$

§4. Law of Conservation of Energy
§4.1 Introduction to energy
Consider a force that produces an acceleration $a=\frac{F}{m}$
in §1 we saw that for constant acceleration: $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$

$$
\rightarrow v_{2}^{2}=v_{1}^{2}+2 \frac{F}{m} d
$$

where $d=x-x_{0}=: x_{2}-x_{1}$

$$
\begin{equation*}
\Leftrightarrow \quad \frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}=F d \tag{*}
\end{equation*}
$$

Definition 1:
i) The combination $\frac{1}{2} m v^{2}$ is called "Kinetic energy", denoted by $E_{k}$
ii) The product $F d$ is called "work done by the force" and is denoted by $W$. units: $N m=$ : $J$ (Joules)

Equation (*) gives the
Theorem I (work-energy theorem):

$$
k_{2}-K_{1}=F d=W
$$

"The change in kinetic energy is equal to the work done by all the forces.
Next, imagine the work is done in a time interval $\Delta t$, distance $d=\Delta x$

$$
\Rightarrow \lim _{\Delta t \rightarrow 0} \frac{\Delta k}{\Delta t}=\frac{d k}{d t}=F \frac{d x}{d t}=F v=: P
$$

Definition 2:
The quantity $P=F v=\frac{d k}{d t}$ is defined as "power"
rate at which work is done
Units: $\frac{f}{s}$ (joules per second) or $W$ (watts)
$\rightarrow$ a 60 W light bulb consumes energy at the rate 60 joules per second Let us now look at forces that vary in time:

- force of a spring $F(x)=-k x$
- force of gravity (it is only locally approximately constant $=m q$ )
In general:

$\rightarrow$ cannot apply formula $W=F d$ as $F$ varies over distance $d$
$\rightarrow$ for a small interval:
$d K=F(x) d x$ (area of thin rectangle)
$\rightarrow$ have to sum up al small rectangles below graph
$\rightarrow$ going from $x_{1}$ to $x_{2}$ means computing area under graph "Riemann integral"
$\rightarrow$ work-energy theorem in general form:

$$
K_{2}-K_{1}=\int_{x_{1}}^{x_{2}} F(x) d x=: w
$$

Use "Fundamental Theorem" of calculus to compute it:

- find function $G(x)$ with

$$
F(x)=\frac{d G(x)}{d x}
$$

- then $\begin{aligned} \int_{x_{1}}^{x_{2}} F(x) d x & =G\left(x_{2}\right)-G\left(x_{1}\right) \\ & \approx F\left(x_{1}+l \frac{x_{2}-x_{1}}{n}\right)\end{aligned}$

$$
\begin{aligned}
\int_{x_{1}}^{x_{2}} F(x) d x & =\lim _{n \rightarrow \infty} \sum_{l=1}^{x_{1}} \frac{\approx F\left(x_{1}+l \frac{x_{2}-x_{1}}{n}\right)-G\left(x_{1}+(l-1) \frac{x_{2}-x_{1}}{n}\right)}{\frac{1}{n}} \cdot \frac{1}{n} \\
& =G\left(x_{2}\right)-G\left(x_{1}\right)
\end{aligned}
$$

